Lecture 6

Decreaseand-Congquer

i

i

144

[Decreaseand-Conguer
r'rs

rVru
Reduce problem instance to smaller instance of the same

proplem
Solve smaller instance

Extend solution of smaller instance to obtain solution to
original instance

Can be Implemented-eitheritopdown or bottom-up
Also referred to asinductive or incremental approach

o1

i

i

144

3 Types of Decrease ana Conquer

Decrease by a consta@sually by 1):
INsertionsort
graphitraversal algorithms (DES and BES)
topological sorting
algonthms forgenerating permutations, subsets

Decrease by a constantfact@rsually by half)
pinary search and bisection method
exponentiation by squaring
multiplication ala russe

Variable-size decrease
Eucli'dos al gor i t hm
selection by partition
Nim-like games

rrr

rrau

52

i

i

114

What osiiit-hhee dI T f er er
'

rVru
Consider the problem of exponentiation: Computea”

Brute Force:
Divide and conquer:
Decrease by one:

Decrease by.constant factor:

53

Insertion Sort
'r

To sort array A[0r.n-1], sort A[0..n-2] recursively and then™ = ®
INsert A[n-1] infits proper place among the sorted A{On-2]

Usually implemented bottom up (nonrecursively)

Example: Soit 6, 4, 1,85

i

i

144

Pseudocode of Insertion: Sort
'y

ALGORITHM InsertionSort(A[0..n — 1])

/[Sorts a given array by insertion sort
/Input: An array A[0..n — 1] of n orderable elements
//Output: Array A[0..n — 1] sorted in nondecreasing order
fori < 1ton—1do

v < Ali]

j<«—i—1

while j > 0 and A[j] > v do

A[j +1] < A[j]

J<j—1
Alj+ 1]« v

i

i

144

Analysis of Insertion Sort
I'rf

Time efficiency

Cworst(n) = n(n'l)/2i U(nZ)
C.ug(n) & n7/4 1 U(n?)

Co(n)=n-1I U(n) (also faston almost sorted arrays)
Space efficiency: inplace

Stability:yes

Best elementary sorting algorithm overall

Binary InSertion Sort

56

i

i

144

Grapnh lraversal
I'rf

rVru
Many problems require processing all‘graph vertices (and

edges) 'in systematic fashion

Graphtraversalialgonthms:

Depth-first search (DES)

Breadth-first search (BES)

o7

i

i

114

Depth-First: Search (DES)
1.
Viisi - tus graphos vertices Dby

visited vertex to unvisited one, backtracks if no adjacent
unvisited vertex i1s available.

Uses a stack

a vertex s -pushed onto, th
firsttime

a vertex 1S popped off the stack when:it' becomes a dead
end, 1.e., when there is no adjacent unvisited -vertex

n'Redr aws o0 . g-likarashioni(with titeer eelges and
pack edges forundirected-graph)

58

Pseudocode of DES

ALGORITHM DFS(G)

/Implements a depth-first search traversal of a given graph
/[[Input: Graph G = (V, E)
//Output: Graph G with its vertices marked with consecutive integers
//in the order they’ve been first encountered by the DFS traversal
mark each vertex in V with 0 as a mark of being “unvisited”
count <0
for each vertex vin V do
if v is marked with 0

dfs(v)

dfs(v)
[Ivisits recursively all the unvisited vertices connected to vertex v by a path
/land numbers them in the order they are encountered
/Ivia global variable count
count < count + 1; mark v with count
for each vertex w in V adjacent to v do
if w 1s marked with 0

dfs(w)

i

1

Example: DES traversal of undirected graph
I,
®©@ 66 O O

DES traversal stack: DES tree:

510

Notes on DES
'yl

rVru
DES ¢an beimplemented with-graphs represented as:

adjacency matricesu(\/2)
adjacency listSU(V[+|E|)

Yields two distinct ordering of vertices:

orderinwhichvertices are first encountered (pushed onto stack)
orderinwhichvertices become dea@nds (popped off stack)

Applications:
checking connectivity, finding connected components
checking acyclicity
fnding articulation points andbiconnected components
searching statespace of problems for solution (Al)

i

i

144

511

i

i

144

Breadth-first'search (BES)
r'rs

rVru
VISItS graph vertices by moving across to all the neighbors

ofilast visited vertex
Instead of a stack, .BES uses a gueue

Similar.to level-by-level tree traversal

nRedr aws 0 i g-hkeafpshioni(with ttea eelges and
Cross edges for undirected graph)

512

Pseudocode of BES

