
Lecture 6

Decrease-and-Conquer

5-1

Decrease-and-Conquer

1. Reduce problem instance to smaller instance of the same

problem

2. Solve smaller instance

3. Extend solution of smaller instance to obtain solution to

original instance

f Can be implemented either top-down or bottom-up

f Also referred to as inductive or incremental approach

5-2

3 Types of Decrease and Conquer

f Decrease by a constant (usually by 1):

Å insertion sort

Ågraph traversal algorithms (DFS and BFS)

Å topological sorting

Åalgorithms for generating permutations, subsets

f Decrease by a constant factor (usually by half)

Åbinary search and bisection method

Åexponentiation by squaring

Åmultiplication à la russe

f Variable-size decrease

ÅEuclidôs algorithm

Åselection by partition

ÅNim-like games

5-3

Whatôs the difference?

Consider the problem of exponentiation: Compute an

f Brute Force:

f Divide and conquer:

f Decrease by one:

f Decrease by constant factor:

5-4

Insertion Sort

To sort array A[0..n-1], sort A[0..n-2] recursively and then

insert A[n-1] in its proper place among the sorted A[0..n-2]

f Usually implemented bottom up (nonrecursively)

Example: Sort 6, 4, 1, 8, 5

 6 | 4 1 8 5

 4 6 | 1 8 5

 1 4 6 | 8 5

 1 4 6 8 | 5

 1 4 5 6 8

5-5

Pseudocode of Insertion Sort

5-6

Analysis of Insertion Sort

f Time efficiency

 Cworst(n) = n(n-1)/2 Í Ū(n2)

 Cavg(n) å n2/4 Í Ū(n2)

 Cbest(n) = n - 1 Í Ū(n) (also fast on almost sorted arrays)

f Space efficiency: in-place

f Stability: yes

f Best elementary sorting algorithm overall

f Binary insertion sort

5-7

Graph Traversal

Many problems require processing all graph vertices (and

edges) in systematic fashion

Graph traversal algorithms:

ÅDepth-first search (DFS)

ÅBreadth-first search (BFS)

5-8

Depth-First Search (DFS)

f Visits graphôs vertices by always moving away from last

 visited vertex to unvisited one, backtracks if no adjacent

 unvisited vertex is available.

f Uses a stack

Åa vertex is pushed onto the stack when itôs reached for the

first time

Åa vertex is popped off the stack when it becomes a dead

end, i.e., when there is no adjacent unvisited vertex

f ñRedrawsò graph in tree-like fashion (with tree edges and

 back edges for undirected graph)

5-9

Pseudocode of DFS

5-10

Example: DFS traversal of undirected graph

a b

e f

c d

g h

DFS traversal stack: DFS tree:

5-11

Notes on DFS

f DFS can be implemented with graphs represented as:

Åadjacency matrices: Ū(V2)

Åadjacency lists: Ū(|V|+|E|)

f Yields two distinct ordering of vertices:

Åorder in which vertices are first encountered (pushed onto stack)

Åorder in which vertices become dead-ends (popped off stack)

f Applications:

Åchecking connectivity, finding connected components

Åchecking acyclicity

Å finding articulation points and biconnected components

Åsearching state-space of problems for solution (AI)

5-12

Breadth-first search (BFS)

f Visits graph vertices by moving across to all the neighbors

of last visited vertex

f Instead of a stack, BFS uses a queue

f Similar to level-by-level tree traversal

f ñRedrawsò graph in tree-like fashion (with tree edges and

cross edges for undirected graph)

5-13

Pseudocode of BFS

